

University of Redlands

Recovery of Crash Site Web Application

A Major Individual Project submitted in partial satisfaction of the requirements

for the degree of Master of Science in Geographic Information Systems

by

Shilpi Jain

Fang Ren, Ph.D., Committee Chair

Mark Kumler, Ph.D.

August 2015

Recovery of Crash Site Web Application

Copyright © 2015

by

Shilpi Jain

 v

Acknowledgements

I would like to express gratitude to my advisor, Dr. Fang Ren, who supported me

throughout my thesis with her expertise and knowledge. I appreciate her assistance in

designing the model for this project and writing reports. I would like to thank Dr. Mark

Kumler for taking time out from his busy schedule to assist me with designing the poster

and serving as my second reader.

Any project begins with an idea. I am grateful to Mr. Fon Allan Duke, the Manager

at Mojave Desert Ecosystem Program (MDEP), for bringing this project to the table,

providing all the required data, and promoting the web application.

This project included various programming languages and making them coordinate

together was a huge task. For their patience and insights while in the development phase,

a special thanks to Mr. Jason Boggs from MDEP and Mr. Nathan Strout from University

of Redlands.

The following sloka is best to acknowledge my parents, Sarita Jain and Sudhir Jain.

श्रीमदभागवत 10455

सवाार्ासंभवो दहेो जनित: पोनितो यत: |

ि तयोयाानत निवशे ंनपत्रोमात्र्य: शतायुिा ||

It means - A mortal (a man) with the life of one hundred years even, cannot be free from

the debts of his parents, from whom the body, which is the root of the four principal

objects of human life (Dharma, Artha, Kaama and Moksha), has originated and by whom

it has been nourished.

I love my little brother Saransh, whose unconditional support and love made me

believe in myself. Completing the thesis and defending it in time was a lot of work for 10

months and a little intense for me. I have been blessed with wonderful friends (Neel,

Karina, Nick, John, and JP) who helped me to go through this journey of ups and downs.

Finally, I would like to thank my Guru, Mrs. Ramya M. B., who introduced me to

this amazing field of GIS and Mrs. Ritu Malik.

 vii

Abstract

Recovery of Crash Site Web Application

by

Shilpi Jain

Any airplane crash is followed by investigations, search and rescue operations, and clean

ups. Determining the debris concentration and affected areas is a challenge for the first

responders and clean-up crews as they work based on their past experiences. Recovery of

Crash Site is a web application which projects the estimated debris area using the various

crash characteristics. It is developed to help the first responders, clean-up crews, and

investigators to initiate the search for the debris and work more efficiently by reducing

the guesswork. Testing the application on various devices gives the results which can be

very helpful for transportation safety and aviation industry.

 ix

Table of Contents

Chapter 1 – Introduction ... 1
1.1 Client ... 1

1.2 Problem Statement .. 1
1.3 Proposed Solution ... 2
1.3.1 Goals and Objectives .. 2
1.3.2 Scope ... 2
1.3.3 Methods... 2

1.4 Audience ... 3
1.5 Overview of the Rest of this Report ... 3

Chapter 2 – Background and Literature Review .. 5
2.1 Debris Modeling ... 5
2.1.1 Trajectory Analysis Program .. 5
2.1.2 Common Real-Time Footprint .. 6
2.1.3 Crash Site Debris Recovery Mobile Application.. 6

2.2 Impact of Terrain on Crash Site .. 6
2.3 Geographic Information System and Web .. 8

2.4 Summary ... 9

Chapter 3 – Systems Analysis and Design .. 11
3.1 Problem Statement .. 11

3.2 Requirements Analysis ... 11
3.2.1 Functional Requirements .. 11

3.2.2 Non-Functional Requirements .. 12
3.3 System Design .. 12

3.4 Project Plan ... 13
3.4.1 Project Phases ... 13

3.4.2 Deliverables .. 15
3.4.3 Assumptions .. 15
3.5 Summary ... 15

Chapter 4 – Database Design ... 17
4.1 Conceptual Data Model .. 17
4.2 Logical Data Model .. 18

4.3 Data Sources and Loading .. 19
4.4 Summary ... 19

Chapter 5 – Implementation .. 21
5.1 Developing the RoCS Geoprocessing Service .. 21
5.2 Extracting Terrain Property .. 24
5.3 Developing RoCS Web Application ... 27
5.4 Summary ... 33

Chapter 6 – Results and Analysis.. 35
6.1 Effects of Parameters on the Estimated Debris Field 35
6.2 Model Validation .. 36

 x

6.3 Terrain Impact on Debris Prediction... 42

6.4 Web Application Testing .. 45
6.5 Summary ... 45

Chapter 7 – Conclusions and Future Work ... 47
7.1 Future Work .. 47
7.2 Summary ... 48

Works Cited..49

Appendix A. Crash Site Debris Recovery Mobile Application (CSDRMA) Python

Script...51

Appendix B. Recovery of Crash Site (RoCS) Python Script 55

Appendix C. Automated Terrain Python Script ... 61

Appendix D. Measurement Units ... 68

Appendix E. Aircraft Values Used in the Microsoft SQL 2008 R2 Database 69

Appendix F. Instructions to use the Rocs Application ... 70

Appendix G. Crash Site Images .. 75

Appendix H. Formulae .. 77

 xi

Table of Figures

Figure 1-1: Waterfall Model. .. 3
Figure 2-1: Relation between Terrain and Flight Path ... 7

Figure 2-2: Architecture of Web GIS (adapted from Fu & Sun, 2011) 8
Figure 3-1: System Design. .. 13
Figure 3-2: Project Phases. ... 14
Figure 4-1: Conceptual Data Model. .. 17
Figure 4-2: Logical Data Model. .. 18

Figure 5-1: Components of RoCS Web Application. ... 21
Figure 5-2: Workflow of RoCS Geoprocessing Service. 23
Figure 5-3: Output of RoCS Python Tool. .. 23

Figure 5-4: Revised Python Script with Automated Terrain. 25
Figure 5-5: Heading of Aircraft .. 26
Figure 5-6: Determining Terrain Characteristic (Uphill/Downhill) 26
Figure 5-7: RoCS Web Application Interface. ... 27

Figure 5-8: Screen Shots of RoCS Web Application .. 29
Figure 5-9: Location Page of RoCS .. 30

Figure 5-10: Results Page of RoCS .. 31
Figure 5-11: Menu of RoCS ... 32
Figure 5-12: Add/Download Airplanes Page of RoCS ... 33

Figure 6-1: RoCS Geoprocessing Tool ... 38
Figure 6-2: RoCS Generated Debris Area .. 39

Figure 6-3: Minimum Boundary Geometry tool (ArcMap 10.2) 40

Figure 6-4: Comparison of Predicted and Actual Debris Fields 41

Figure 6-5: Revised Python Tool .. 43
Figure 6-6: Difference in Outputs of the RoCS and the Revised Python Tool 44

 xiii

List of Tables

Table 3-1: Functional Requirements .. 12
Table 3-2: Non-Functional Requirements .. 12

Table 5-1: Parameters for RoCS Geoprocessing Service ... 22
Table 5-2: Output Parameters of RoCS Geoprocessing Service. 24
Table 5-3: Default Parameters of Basic Mode in RoCS Web Application. 28
Table 6-1: Input for Test Cases ... 37
Table 6-2: Model Accuracy and Efficiency Measures ... 42

 xv

List of Acronyms and Definitions

ACTA Asteroid and Comet Tracking Agency

AFB Air Force Base

AGL Above Ground Level

Cd Drag Coefficient

CRTF Common Real-Time Footprint

CSDRMA Crash Site Debris Recovery Mobile Application

CSS Cascade Style Sheet

ER model Entity-relationship model

FAA Federal Aviation Administration

GIS Geographic Information System

HTML HyperText Markup Language

JPG Joint Photographic Experts Group

js JavaScript File

kts Knots

ldf Log Data File

MDEP Mojave Desert Ecosystem Program

mdf Master Data File

MS Microsoft

MSL Mean Sea Level

NASA National Aeronautics and Space Administration

NGA National Geospatial-Intelligence Agency

NTSB National Transportation Safety Board

PHP Hypertext Preprocessor

py Python File

RoCS Recovery of Crash Site

SAR Search and Rescue

SQL Structured Query Language

TAP Trajectory Analysis Program

tbx ArcMap Toolbox File

URL Uniform Resource Locator

WGS World Geodetic System

1

Chapter 1 – Introduction

Various factors, such as human error like air traffic control error, design flaw, explosive

device on board, fuel starvation, hijacking, and unsuitable weather conditions like

lightning, heavy rains or bird strikes can cause an airplane crash. Investigations following

any airplane crash range from searching debris area for crashes to analyzing and mapping

them. An important part of these investigations is locating areas with high concentrations

of debris. Collecting debris from the incident area is a very high priority task for two

reasons. First, the authorities must rebuild the plane from recovered debris in order to

determine the cause of the crash. Second, the debris may contain some toxic materials

that may endanger the surrounding areas. The area may also contain human remains or

survivors, and identifying the debris area can help the first responders rescue as many

people as possible.

Immediately after a crash, authorized personnel give an approximate location of the

crash to first responders who search the area for debris, pilot, and passengers. Without a

model to inform their search they use their personal experience to approximate the

location of the debris, which may result in a delay in providing medical help to injured

passengers. This project aimed to develop a web application that generates the debris

area, which can considerably reduce the time taken by the first responders and help them

work more efficiently.

1.1 Client

The Mojave Desert Ecosystem Program (MDEP) was the client for this project and Mr.

Fon Allan Duke, Project Manager, was the point of contact. This organization provides

solutions and services to government agencies to ensure their smooth functioning

(Mojave Desert Ecosystem Program, n.d.). In 2012, Steve Mesa, formally with the

National Geospatial-Intelligence Agency (NGA) out of Nellis Air Force Base (AFB),

expressed interest to MDEP for an application which could help first responders recover

aircraft debris more efficiently (F. A. Duke, personal communication, July 7, 2015). Fon

Allan Duke identified the need for a mobile application that generated probable debris

area of an airplane crash. The original application was developed by Nicholas Janzen in

2012 on the Windows mobile platform. Since the application was a native mobile

application, the target audience was very limited. In 2015, to overcome this issue, Fon

Allan Duke recognized the need for a web application which is platform independent.

1.2 Problem Statement

The problem addressed in this project is the difficulty faced by first responders and

investigators of an airplane crash to make an estimate of the debris area. In addition, the

operational environment of the existing Windows mobile application hinders the use of

the application by a broader audience. Therefore, a program independent of operating

system was in demand which would have a widespread use so that the users can have

access to the application from any device or browser.

2

1.3 Proposed Solution

The proposed solution was to develop a JavaScript web application with Cascade Style

Sheet (CSS), HyperText Markup Language (HTML), Hypertext Preprocessor (PHP), and

ArcGIS geoprocessing service. Any device with a HTML compliant web browser and

GPS and internet connectivity can use this application. The point selection map works by

geo-locating from the on-board GPS. It will not function without that feature enabled. An

additional feature of the web application would consider the impact of various terrain

factors on the debris area.

1.3.1 Goals and Objectives

The main goal of this project was to develop a solution for the first responders and

investigators of an airplane crash, to estimate the debris area. To fulfill this goal, there

were three objectives. The first was to develop a MS SQL 2008 R2 database that stores

information about airplanes. The second was to publish a geoprocessing tool that

generated the debris area using a python script. The last was to develop a web application

that is platform independent, takes various inputs, and displays the debris area.

1.3.2 Scope

The scope of the project outlines the deliverables of the project as well as the constraints

considered in the project. Deliverables of this project include a geoprocessing service, a

web application, and a non-spatial SQL database. The geoprocessing service calculates

the debris area according to the input of the user. The geographic information system

(GIS) web application was the main deliverable, which executes the published

geoprocessing service and allows the users to visualize the calculated debris area. Any

device with a working internet connection, a browser, and a GPS can access the

application. The application relies on a database of airplanes which was developed in

Microsoft SQL 2008 R2.

There are a few constraints applied to the web application. The airplane models are

confined to the model information provided by the client. If a required airplane is not

present in the database, the user can add it through the provided link in the web

application. The debris area calculated by the geoprocessing service considers the terrain

angle which is uphill or downhill, but it does not consider the aspect of terrain because of

the limitations of the adopted debris model. The area calculated depends solely on the

values entered by the user.

1.3.3 Methods

The project had clear and fixed requirements from the beginning, so a waterfall model

was utilized. The project required limited collaboration with the client and the technology

was well understood. Figure 1-1 shows the phases of this methodology. Since none of the

phases overlap, this model was best suited for his project. Each phase is processed at a

time and has a specific deliverable.

3

Figure 1-1: Waterfall Model.

The first phase, planning and requirements, dealt with requirement gathering and

planning milestones which helped in on-time delivery of the application. During the

following design phase, the layout of the web application was finalized in consultation

with the client. For the third phase, a web application was developed in JavaScript,

Hypertext Preprocessor (PHP), HyperText Markup Language (HTML), and Cascade

Style Sheet (CSS). Various parameters are taken as an input from the user, which are

used to call the published geoprocessing service, and the resultant debris area is displayed

on a map. Users can save this map as a jpg image file or email it. For the final phase

deployment, the geoprocessing service and the web application were published on the

client’s server.

1.4 Audience

The users of this web application will include non-technical GIS individuals and GIS

professionals. Users can use the application to obtain the debris area or as a supplement

to analyze various aspects, like affected population and terrain of the area, so that the first

responders can reach the destination in time.

Users can be employees of the US Air Force or the National Geospatial-Intelligence

Agency, and others who knows how to operate the web site.

1.5 Overview of the Rest of this Report

Chapter 2 gives a background of airplane crash modeling. Chapter 3 discusses the various

steps of the waterfall model implemented to deliver the project. Chapter 4 provides

details about the data model used. Chapter 5 presents the implementation process used for

this project. Chapter 6 defines the results and analysis. Chapter 7 concludes the report and

lists the future work.

Deployment
Development
and Testing

Design
Planning and
Requirements

5

Chapter 2 – Background and Literature Review

GIS techniques are very useful in search and rescue (SAR) operations because they can

produce results very quickly by specifying the incident area and finding the optimal route

to it. This, in turn, helps to decrease search time and reduce search efforts (Söylemez &

Usul, 2006). This chapter gives contextual details about the models and technologies used

in this project to create the Recovery of Crash Site (RoCS) web application. The Chapter

is organized as follows. Section 2.1 introduces various debris models considered to create

this application. Section 2.2 gives details about the terrain model incorporated in the

application. The following section explains relationship between GIS and web

technology and application of web GIS. The chapter ends with a summary.

2.1 Debris Modeling

The research and empirical work done for debris modeling of airplane crashes is very

limited. The major development in this field was after the 2003 NASA Space Shuttle

Columbia disaster. This section gives details about the debris models considered for this

project.

2.1.1 Trajectory Analysis Program

The Federal Aviation Administration (FAA) and National Transportation Safety Board

(NTSB) developed a formula that provides adequate spectator separation distances for an

Air Race type of event to make sure that the airshow spectators are safe from any

possible accident during the event. Spectator separation distance can be defined as

distance between the spectator area of an event and the area where the event is taking

place. The FAA formula is as follows:

𝑆𝑐𝑎𝑡𝑡𝑒𝑟 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑆𝑝𝑒𝑒𝑑 √2 (𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒)

32.2

Calculated scatter distance is in feet, when aircraft speed is in miles per hour and

aircraft altitude is in feet. However, it does not consider all the variables involved in the

airshow environment, such as weight, frontal area and drag characteristics of the

projectile (Oldham, 1990).

The FAA formula was customized into a new program to yield a more accurate

scatter distance. This new program named the Trajectory Analysis Program (TAP) was

designed using the Basic programming language for airshow environment and in-flight

disintegration by Oldham in 1990. Variables considered in the TAP model include initial

altitude of disintegration (in feet AGL), initial density altitude (in feet AGL), altitude of

impact at ground level (in MSL feet), wind velocity (in knots), wind direction (in

degrees), airspeed at disintegration (in knots), rate of climb or sink at disintegration (in

degrees), projectile weight (in pounds), projectile drag coefficient, and projectile frontal

area (in square feet). The outputs given by the model are the horizontal distance from

disintegration at impact (in feet), the total velocity (in knots), the terminal velocity (in

knots), the time of fall (in seconds), the flight path angle at impact (in degrees), and the

ground speed of projectile at impact (in miles per hour) (Oldham, 1990).

6

2.1.2 Common Real-Time Footprint

The Asteroid and Comet Tracking Agency (ACTA) developed the Common Real-Time

Footprint (CRTF) program for risk analysis at the Air Force Eastern and Western Ranges.

This program generates dispersion footprints and impact probability contours to define

the hazard areas after a vehicle breakup. CRTF models various uncertainties like real-

time vehicle state vector, course change at the time of malfunction, uncertainty of

fragments, ballistic coefficient, lift effect of fragments, and wind (Lin, Larson, & Collins,

2003).

NASA uses CRTF to calculate safe flying distances during the launch and reentry of

Reusable Launch Vehicles. However, CRTF cannot be used for the development of the

RoCS web application because being a proprietary software the algorithms of CRTF are

not released for public (Sarconi, 2013).

2.1.3 Crash Site Debris Recovery Mobile Application

Janzen (2012) developed the Crash Site Debris Recovery Mobile Application

(CSDRMA) as a thesis project. This was a Windows mobile application developed for

the Mojave Desert Ecosystem Program (MDEP). The application projects an estimated

area of high debris concentration using the GPS location of the mobile device, a

geoprocessing service, and user-defined variables of affected aircraft and its crash

characteristics. The debris trajectory formula employed in the calculation was adopted

from the Trajectory Analysis Program mentioned earlier, with an expansion to include

the impact of terrain as described in the next section. In addition, four accuracy test cases

were conducted using ArcMap. The first test was on the 1991 Boeing 737-200 crash

which occurred at Colorado Springs Municipal Airport, Colorado. The actual debris area

of this airplane crash was within the results of the area generated in CSDRMA. The next

test involved a Hawker Beechcraft 125-800A that crashed at Owatonna Degner Regional

Airport, Minnesota in 2008. The actual debris area of this crash was much larger than the

area generated in CSDRMA. The third test was carried out on a Lockheed Martin F-22A

Raptor crash that occurred in Alaska in 2010. The actual debris area did not match the

generated test area. The last test was on a Piper PA-31 Navajo that crashed near Mauna

Loa volcano, Hawaii in 1999. The debris area of this crash partially coincided with the

estimated area. Therefore, two out of these four test cases were considered as reasonably

successful.

Unfortunately, the majority of targeted users were not able to use this application

because the application was developed for only Windows Phone 7. Given this limitation,

there was a need to develop similar applications that are platform independent. Since the

problem addressed in Janzen (2012) was similar to that of RoCS, the geoprocessing

service of CSDRMA was incorporated in RoCS application with some modifications.

2.2 Impact of Terrain on Crash Site

Terrain plays an important role while calculating the impact of an accident, whether it is a

car crash, an airplane crash, or any other. Different angles and directions of terrain can

result in very different debris area even if all the other parameters are same. To include

7

the effect of terrain on debris area of an airplane crash, Janzen (2012) used terrain angle

and terrain characteristic as uphill or downhill.

There are various investigation handbooks written for the investigation of airplane

crashes by National Transportation Safety Board, US Army, and other organizations.

These handbooks describe how terrain can be incorporated while investigating the impact

of an airplane crash. For a clear understanding, the following definitions are included

(Coltman, Ingen, Johnson, & Zimmermann, 1989).

 Flight path angle is defined as the angle between the aircraft flight path and the

horizontal at the moment of impact.

 Terrain angle is defined as the angle between the impact surface and the horizontal,

measured in a vertical plane.

 Impact angle is defined as the angle between the flight path and the terrain,

measured in a vertical plane. It is the algebraic sum of the flight path angle and the

terrain angle.

Figure 2-1 gives a visual interpretation of the definitions. If all the other parameters

remain unchanged, uphill terrain at any angle will reverse the direction of debris area,

whereas downhill terrain increases the debris spread in the same direction. Since uphill

increases the impact angle, the resultant debris area is smaller than on flat terrain. On the

contrary, downhill terrain yields a larger debris area because it decreases the impact

angle. Terrain characteristics were considered in this project as well.

Figure 2-1: Relation between Terrain and Flight Path

8

2.3 Geographic Information System and Web

Any GIS that uses web technology to communicate between components is termed as

Web GIS (Fu & Sun, 2011). Integrating GIS and the web technology opens the gate to

many opportunities as people can visualize, analyze, and even build data online. This

helps to increase the target audience for GIS applications. Moreover, it aids in building

data by people rather than by formal data producers so that data are accessible freely. The

basic structure of web GIS is shown in Figure 2-2 (adapted from Fu & Sun, 2011). It

includes a database server, a GIS server, a web server, the Internet, and client(s). The

architecture shown in the figure is three-tier, which means data, logic, and presentation

are on separate computers. According to the requirement of an application and

availability of resources, web GIS can be implemented as one-tier or two-tier as well.

Figure 2-2: Architecture of Web GIS (adapted from Fu & Sun, 2011)

There are many web-based GIS applications used throughout the world in various

fields. The government uses them for public information services, communication with

people in a more efficient way, and as a tool to make decisions (Esri, 2015a). For

example, the City of Rancho Cucamonga, California, USA uses interactive GIS web

applications such as My Community to give people information about zoning, flood

zones, general plan, trash pickup zones, and street sweep zones (City of Rancho

Cucamonga, 2015). Business organizations use GIS applications to open new stores,

increase the target customers, generate routes for distribution trucks, analyze trade areas,

and other business operations (Esri, 2015b). An example is banks providing locations of

their ATMs and offices as online maps to their customers, such as US Bank (U.S. Bank,

2015). Researchers use these applications to collect and organize data, analyze them, and

discover new facts or procedures (Esri, 2015c). For example, Whale mAPP is used by

California’s Marine Sanctuaries, Point Blue Conservation Science to protect endangered

whales (Point Blue Conservation Science, 2015).

Since the requirement of the client to build the RoCS application was to increase the

range of target audience, web GIS seemed appropriate approach. Web GIS can be a

native mobile application or a web application. A native mobile application is platform

dependent. It can work on only the supported mobile operating system (Apple, Android,

and Windows etc). A web application is supported on all platforms and devices that have

an internet connection and a web browser. Therefore, it was decided to develop the RoCS

http://www.pointblue.org/

9

as a web application because a native mobile application already existed for Windows

mobile phones (Janzen, 2012).

2.4 Summary

This chapter reviews various debris models, terrain model, and web GIS. Based on the

past work, the web GIS technology and the TAP debris model were chosen to implement

the RoCS application to broaden the future users. Due to limitations of the implemented

model, effect of obstacles in the debris area is not considered in the application. This web

application would include search and rescue operations to produce a geo-referenced area

of high concentration of debris so that the first responders and clean-up crews can work

more effectively in a given period.

11

Chapter 3 – Systems Analysis and Design

This chapter defines in detail the problem addressed in this project and the design phase

of the project. Section 3.1 revisits the problem statement and Section 3.2 explains the

requirements analysis conducted for this project. System design is illustrated in Section

3.3 and Section 3.4 focuses on the project plan. The chapter ends with a summary of the

system analysis and design.

3.1 Problem Statement

The problem addressed in this project is the difficulty faced by first responders and

investigators of an airplane crash to make an estimate of the debris area. In addition, the

operational environment of the existing Windows mobile application hinders the use of

the application by a broader audience. Therefore, a program independent of operating

system was in demand which would have a widespread use so that the users can have

access to the application from any device or browser.

3.2 Requirements Analysis

Requirements analysis is a very crucial phase for a project because misunderstanding of a

client’s requirements can lead to rework, cost overruns, quality issues, or schedule delays.

This section lists various requirements of this project.

3.2.1 Functional Requirements

The functional requirements describe what functions or capabilities the system must

provide. Table 3-1 outlines the functional requirements associated with this project.

These include zoom into the current location, zooming-in and out on the map, visualizing

debris area, emailing debris area, saving the debris area as a JPG file, and switching base

maps.

12

Table 3-1: Functional Requirements

 Functional Requirement Description

1. Current Location Application shall zoom in to the current location on

Location page.

2. Zoom In/Out Application shall zoom in/out, whenever zoom in/out

button is clicked or by using finger gestures on

Location or Results page.

3. Pan/Move Application shall move the map, using mouse or

finger gestures on Location or Results page.

4. Display Debris Area Application shall display the calculated area when

Finish button is clicked.

5. Email Map Application shall Email the map, if Email button is

clicked.

6. Save Map as JPG Application shall save the map as a JPG file, if Print

option is selected.

7. Switch Basemap Application shall change the basemap to the one

selected from Switch Basemap menu.

3.2.2 Non-Functional Requirements

The non-functional requirements focus on how well the system must perform. These

requirements relate to interfaces, usability, accessibility, integration, operational

environment, performance, security requirements, maintenance, system administration,

and documentation. Table 3-2 shows the non-functional requirements associated with this

project, which were related to user interface, performance, and responsiveness.

Table 3-2: Non-Functional Requirements

 Non-Functional Requirement Description

1. User Interface Application shall be usable by people with no

GIS experience.

2. Performance Application shall display the calculated debris

area within one minute after Finish button is

clicked.

3. Responsive Application shall work on phones, tablets, and

laptops.

3.3 System Design

The web application for debris estimation, Recovery of Crash Site (RoCS), is accessible

from mobile phones, tablets, computers, or any modern devices that have internet access

and a browser. The system design of this web application is displayed in Figure 3-1.

13

Figure 3-1: System Design.

When the user interacts with RoCS, he/she needs to enter the required parameters for

calculating the debris area, such as manufacturer, model, speed, direction heading and

angle of descent of the aircraft, speed of wind at ground level, direction of wind at ground

level, angle of terrain which is uphill/downhill. These values are at the time of initial

impact. Other parameters, including frontal area, drag coefficient, weight, and wingspan

of the aircraft are loaded from the MS SQL 2008 R2 database, through PHP (Hypertext

Preprocessor) code by selecting the manufacturer and model of the airplane that crashed.

Selecting the aircraft manufacturer limited the choices of available models based on the

selection. These values are passed to the geoprocessing (GP) service when the Finish

button is clicked. Published on ArcGIS for Server, the geoprocessing service calculates

the debris area based on a formula created by Oldham (1990) and refined by Janzen

(2012). The final estimated debris area is displayed on a map. The user can then save this

map or email it as a JPG file, as per the requirement.

3.4 Project Plan

A project plan defines all the phases of a project and the respective tasks allocated to

them. This section gives details about the project phases, tasks, deliverables, and the

assumptions made during development.

3.4.1 Project Phases

Various phases of this project are discussed in this section. Figure 3-2 gives a hierarchical

structure of these phases.

14

Figure 3-2: Project Phases.

Design phase included gathering requirement and creating a logical model of the

project. The first task in this phase was to gather information required to proceed with the

development of the application from the client. Since this project was implemented using

the waterfall approach, client requirements were finalized by the end of the first month

and there were no further changes. For the second task, a document was provided to the

client to define the project requirements and the proposed solution and methodology that

were adopted. The next task created a testing environment. The project development was

done on a local machine, but the client provided a virtual machine, which was a mirror

image of the working environment. It was used in further phases to test the application.

The fourth task was to define a database model so that the logical structure of the

database could be finalized. The model explained how to traverse or modify the database.

The look and feel of the web application was one of the focuses for the client, because

this application will be used during emergencies. This was the final task of the design

phase. The visual structure of the application was developed in HTML (Hypertext

Markup Language) 5.0 and CSS (Cascading Style Sheet).

15

The phase of development included building the physical data model, developing the

application and tools, and performing quality checks. The first task of this phase was to

develop a geoprocessing service using Python 2.7 to calculate the debris area. The next

phase was to test this service. After fixing the identified bugs, the service was published

on ArcGIS for Server. The third task was to develop the web application using

JavaScript, HTML 5.0, PHP, and CSS for calculating and displaying the debris area. The

Trajectory Analysis Program (TAP) developed by Oldham (1990) and the Crash Site

Debris Recovery Mobile Application (CSDRMA) developed by Janzen (2012) were used

for calculation of the area. The fourth task was to create a non-spatial MS SQL 2008 R2

database according to the designed database model. Next, the application was modified to

connect with the database. In addition, a new page was created, through which new

airplanes can be entered in the database. The final task was to test the web application.

Deployment was the final phase of this project. Final testing, review, and final

implementation were done in this phase. Publishing the application, geoprocessing

service, and database was the primary task. It was followed by testing the web

application’s features and functionalities. The final task was to create a help page within

the application to facilitate the use of the application.

3.4.2 Deliverables

The deliverables associated with this project included both tangible and intangible objects.

The first deliverable was the web application as a package, consisting of .html, .js, .php,

and .css files. The second was the geoprocessing service in .tbx and .py format and

published on ArcGIS for Server. The third deliverable was the database of airplanes as a

.mdf file, which stores data, and .ldf, which stores the log.

3.4.3 Assumptions

The chief assumption made in this project was regarding the data. It was assumed that the

client would provide assistance to collect the data for the database and testing the web

application. Another assumption was that the test environment provided by the client as a

virtual machine was a mirror image of the live environment.

3.5 Summary

The clearly defined requirements provided by the client reduced the time needed to

complete the initial phase of the project. However, using multiple technologies to develop

the web application caused some delay as compared to the original project schedule.

Apart from this, while developing the web application, the layout was changed multiple

times to get the most suitable and functional view. In spite of some challenges, the

Recovery of Crash Site (RoCS) web application was developed successfully.

17

Chapter 4 – Database Design

The database was one of the most important parts of this project. The adopted debris

model needs many inputs from the user. Some of these parameters are based on the

airplane manufacturer and model. Therefore, to reduce the parameters to be entered by

the user, a database was developed. Once the user enters the airplane manufacturer and

model, the respective values will be extracted automatically from the database, which

simplifies the use of the web application for the users. Section 4.1 gives details about the

conceptual model of the project. Section 4.2 defines the logical model of the database.

Section 4.3 discusses the data sources and data collection methods. A summary of the

chapter is provided in Section 4.4.

4.1 Conceptual Data Model

A conceptual model defines the various entities and their relationships required to

demonstrate a problem. In this project, the problem addressed was the difficulty faced by

first responders and investigators after an airplane crash to search for debris. Figure 4-1

displays a conceptual model for this project.

Figure 4-1: Conceptual Data Model.

Aircraft, environment, terrain, flight, crash, and debris field were the entities

involved in this project. When an aircraft crashes into terrain due to natural factors or

human error a debris field is generated. The debris field is affected by airplane

18

characteristics, flight entities, terrain, and environment. A change in any of these

parameters can result in different debris throw distance and debris velocity. The model

also describes how these entities are related. The relationship can be one-to-one, one-to-

many, many-to-one, or many-to-many. In Figure 4-1, n means many and 1..n means one

to any number. For example, one crash can have a single debris field or many. Therefore,

the relationship is mentioned as 1 to 1..n.

4.2 Logical Data Model

A logical data model gives details about the solution provided to resolve the problem. It

is a subset of the conceptual model, wherein entities used are explained. Figure 4-2

explains the logical model of this project. To develop the Recovery of Crash Site (RoCS)

web application, all the entities mentioned in Section 4.1 were used. However, instead of

storing all instances of Environment and Flight, these two entities were considered as

single values because only one instant of crash were will be calculated in the web

application. In an ideal situation, terrain slope and aspect should be used in crash

characteristics, but for this application, only terrain slope and direction (uphill or

downhill) were considered and they were entered as single values as well. The Aircrafts

entity was designed into a Microsoft SQL 2008 R2 database, which sends the required

aircraft related attributes to the web application to generate the desired information about

the debris field.

Figure 4-2: Logical Data Model.

In this MS SQL database, a table called Aircraft was developed. The table has eight

fields (id, aircraftname, aircraftmodel, aircraftdrag, aircrafftweight, aircrafttwingspan,

aircraftfrontal, and cruisespeed) to store aircraft ID, manufacturer, model, drag

coefficient, weight, wingspan, frontal area, and speed. ID is the dynamically generated

primary key of the table.

19

4.3 Data Sources and Loading

The client provided the data used for the database and testing. The test data included

feature classes of crash locations and actual debris fields for four crashes. The first

dataset was of a 1991 Boeing 737-200 crash which occurred at Colorado Springs

Municipal Airport, Colorado. The second was of UPS flight 1352, an Airbus A300-600,

N155UP, which crashed while landing in 2013 at Birmingham-Shuttlesworth

International Airport, Alabama. The third was of a Boeing 777-236ER, which also

crashed while landing, in 2008, at London Heathrow Airport. The last was of a crash

during an experimental test flight of a Gulfstream Aerospace Corporation GVI (G650) in

2011 at Roswell International Air Center, New Mexico.

There were two feature classes associated with each test case, one for the crash

location and other for the actual debris field. Therefore, eight feature classes were used

for testing. The results from RoCS were compared to these images to determine accuracy

and efficiency.

The test dataset for the Colorado crash was the same as that of Crash Site Debris

Recovery Mobile Application (CSDRMA) (Janzen, 2012). The actual debris fields for the

Alabama and New Mexico crashes were digitized from the images in the National

Transportation Safety Board (NTSB) reports (National Transportation Safety Board,

2001, 2012, 2014). Very few of the NTSB reports include the imagery, some of which

were not usable due to various factors such as not having a full picture of the debris field,

or having no other reference points to estimate the size of the field. The debris field of the

London crash was digitized from the Department for Transport, London report

(Department for Transport (Air Accidents Investigation Branch), 2010).

Since the data for the Colorado crash consisted of ellipses to depict the actual debris

field, the same format was adopted for the Alabama, New Mexico, and London crashes.

Approximate radii of ellipses were used to digitize, based on the debris in images. Refer

to Appendix G for the images.

Data for the MS SQL database were collected from various online sources (Federal

Aviation Administration, 2009; aerospaceweb.org, 2011; Palt, 2015). In addition, some

data are the same as that was used in the Crash Site Debris Recovery Mobile Application

(CSDRMA) (Janzen, 2012).

The data provided by the client for the database and testing were loaded directly to

the database for testing.

4.4 Summary

There were some differences between the conceptual model and the logical model of the

project because of the approach required to address the client’s problem statement. The

data provided by the client were in an appropriate format. After testing, the generated

debris field was added to the geodatabase as a feature class for further analysis.

21

Chapter 5 – Implementation

The solution provided to the client was the development of a web application which can

be accessed from any device which has an Internet connection, a browser, and GPS

capability. Figure 5-1 shows the basic components of this application, including a

database, a geoprocessing service, a web application, and users. This chapter will focus

on the implementation of the geoprocessing service and the web application. Section 5.1

discusses development of the Recovery of Crash Site (RoCS) Python script tool and

publishing it as a geoprocessing service. The next section gives details about the

development of the revised RoCS tool that can automatically extract terrain parameters.

Section 5.3 explains development of the RoCS web application, using the MS SQL

database and the geoprocessing service. The chapter ends with a summary.

Figure 5-1: Components of RoCS Web Application.

5.1 Developing the RoCS Geoprocessing Service

The RoCS web application sends a request to the geoprocessing service, that calculates

the debris area and sends it as a response to the web application. The RoCS

geoprocessing service was developed using a Python script and ArcMap 10.2 Toolbox,

and then it was published on ArcGIS for Server. The RoCS geoprocessing service was

based on the Trajectory Analysis Program (TAP) model and Crash Site Debris Recovery

Mobile Application (CSDRMA) mentioned in Section 2.1 and 2.2. Table 5-1 shows the

parameters of the geoprocessing service. These comprise the latitude and longitude of

crash location, level of ground, wind speed, wind direction, terrain angle, terrain

characteristic, and aircraft parameters including speed, altitude, heading, descent, frontal

area, drag coefficient, weight, and wingspan. The parameters used must be the ones

recorded at the time of impact.

22

Table 5-1: Parameters for RoCS Geoprocessing Service

Data

Source

Input Parameter

(unit)

Description

User Input

Crash Location

(a point)

The input feature class comprising of one

point location. This location is the first point

of contact of airplane with ground during the

crash.

Speed of Aircraft

(knots)

The speed of aircraft at the time of impact.

Altitude of Aircraft

(feet AGL)

Altitude of the flight path.

Aircraft Heading

(degrees)

Direction that the aircraft’s nose was

pointing to. It must lie between 0o and 360o.

Descent of Aircraft

(degrees)

Angle of descent. It must lie between 0o and

90o.

Ground Level (feet

MSL)

Elevation above mean sea level. It must be

less than the altitude of aircraft.

Ground Level Wind

Speed (knots)

Speed of wind at ground level.

Ground Level Wind

Direction (degrees)

Direction of wind at ground level.

Angle of Terrain

(degrees)

Slope at the first point of ground contact

during the crash.

Terrain Characteristic

(None/ Uphill/

Downhill)

Direction of terrain from perspective of

aircraft heading.

Database Frontal Area of

Aircraft (square feet)

Measurement of the area of aircraft,

presented to the airflow.

Drag Coefficient of

Aircraft (Cd)

Aerodynamic forces experienced by aircraft

in horizontal and vertical directions.

Weight of Aircraft

(pounds)

Maximum weight of the aircraft.

Wingspan (feet) Distance from one wingtip to the other of the

aircraft.

Figure 5-2 shows the workflow involved in developing the Python script for the

RoCS geoprocessing service, including specifying user and database input, calculating

the distance impact line using the CSDRMA script and TAP model, and generating

buffers of different debris concentrations. This Python script can also serve as a

standalone tool in ArcGIS for Desktop.

23

Figure 5-2: Workflow of RoCS Geoprocessing Service.

Using the user and database input as specified, the CSDRMA Python script

generated an impact distance line along which debris was spread and a single buffer

around the line to indicate the possible search area for debris (Janzen, 2012). For more

information of the CSDRMA Python script, please refer to Appendix A. However, the

client requested an output including multiple rings for varying debris concentrations as

shown in Figure 5-3. To address this request, three multiple buffers sharing the same start

point were created based on the wingspan of the aircraft. The procedure is as follows.

Figure 5-3: Output of RoCS Python Tool.

First, a second line was generated by moving the first line (impact distance line) in

the direction of debris area by the distance the same as the wingspan. Using the same

process, a third line was generated from the first one with the distance twice the

wingspan. These three lines were saved in the in_memory feature class with a string field

24

buffDist. This field stores wingspan, doubled wingspan (2 × 𝑤𝑖𝑛𝑔𝑠𝑝𝑎𝑛), and tripled

wingspan (3 × 𝑤𝑖𝑛𝑔𝑠𝑝𝑎𝑛) as the buffer distances required in the next step. To get the

area with low, medium, and high concentration of debris, the ArcMap 10.2 Buffer tool

was run with the line feature class as input and its buffDist field as the buffer distance.

Figure 5-3 shows the output generated by the RoCS Python tool. For detailed code,

please refer to Appendix B.

Outputs generated by the RoCS Python script like debris area, velocity, time, debris

distance, and angle of impact are listed in Table 5-2. Apart from the debris area, all other

outputs are non-spatial and are produced as messages of the ArcMap 10.2 Python tool.

Table 5-2: Output Parameters of RoCS Geoprocessing Service.

Output

Parameter

Format Description

Output Debris

Field

Polygon

Feature

Class

The output feature class comprising of three

polygons displaying different debris concentration

areas. Location and name of feature class have to be

entered while using the service in ArcMap.

Debris Terminal

Velocity

knot Terminal Velocity of debris.

Time of Impact seconds Time of debris fall.

Debris Throw

Distance

feet Horizontal distance of expected debris spread.

Angle of Impact degree Angle of impact of aircraft.

Speed of Impact knot Total speed calculated from horizontal and vertical

speeds.

Maximum

Altitude of

Thrown Debris

feet Vertical distance that the expected debris flew.

Once the RoCS Python script was completed in ArcGIS for Desktop, it was

published as a geoprocessing service on ArcGIS for Server and can be accessed from the

URL http://74.208.69.168:26080/arcgis/rest/services/CrashApp/RoCS/GPServer/RoCS.

5.2 Extracting Terrain Property

The RoCS geoprocessing service takes optional parameters: terrain angle and its

characteristic (none/uphill/downhill) from the user. This means that if terrain angle and

characteristic are not entered, the service will assume that the terrain is flat. This might

affect the resultant debris area as discussed in Section 2.2. To handle this drawback,

further modifications were made in the RoCS Python tool to use the slope and aspect

generated by Esri Summarize Elevation Service in degrees (Esri, 2015d). Because this

service is Esri premium content, it cannot be accessed without logging into ArcGIS

Online. To use a premium content in Python tool, an access token has to be generated

dynamically using client_id and client_secret of a registered application (Esri, 2015e).

This token expires after 120 minutes by default. Since Mojave Desert Ecosystem

Program (MDEP) has not adopted Esri’s current model of credits, the extracting terrain

http://74.208.69.168:26080/arcgis/rest/services/CrashApp/RoCS/GPServer/RoCS

25

characteristics function was not incorporated in the RoCS Python script that was

published for the RoCS web application. Instead, a revised Python script was developed

to demonstrate that this function could be used in the future when necessary. Figure 5-4

explains the workflow of the revised RoCS Python script. The inputs required for this

script are the same as shown in Table 5-1, except for terrain angle and its characteristic,

because the terrain aspect and slope were calculated from the service.

Figure 5-4: Revised Python Script with Automated Terrain.

The application was registered on ArcGIS Online and an additional function

getToken() was added in the RoCS Python script to generate a dynamic token using the

client_id and client_secret. A request was sent to the Summarize Elevation Service using

the crash point as an input feature and the token. In response, the service sent a job ID,

with which slope and aspect at the crash location were determined. These values were

converted to terrain angle and none/uphill/downhill using the following procedure.

While using the web application, the user has to select the heading of the aircraft

from a drop down menu. It includes the values North, North East, East, South East,

South, South West, West, and North West. As described in Figure 5-5, these values were

converted to degrees, 0o being north and increasing in clockwise direction.

26

Figure 5-5: Heading of Aircraft

Slope extracted by the Summarize Elevation Service was considered as the terrain

angle. The characteristic of terrain (none/uphill/downhill) was determined using the

aspect which gives the direction of the terrain. The terrain is flat if the aspect returned by

the service is -1. If the aspect of terrain and heading were in opposite directions, as shown

in Figure 5-6 (a), the terrain was considered uphill and the absolute difference between

aspect and slope was greater than 90o. However, if the aspect and heading were not in

opposite directions as shown in Figure 5-6 (b), the terrain was considered downhill and

the absolute difference was less than 90o.

Figure 5-6: Determining Terrain Characteristic (Uphill/Downhill)

27

The slope and none/uphill/downhill values were used further to calculate the impact

angle as mentioned in Section 2.2. For detailed code, refer to Appendix C.

5.3 Developing RoCS Web Application

Since the primary goal of this project was to facilitate the users to access this tool from

various platforms, a RoCS web application was developed using HTML, CSS,

JavaScript, and PHP. The user interface of the application was designed such that it can

be used easily through any mobile device which has an Internet connection, a GPS

service, and a browser. Figure 5-7 shows the RoCS web application interface design.

Figure 5-7: RoCS Web Application Interface.

The home page of the application gives four options to the user: basic mode,

advanced mode, instructions, and add airplane. Basic mode and advanced mode calculate

the debris area based on the parameters entered by the user. Various checks are

performed on these parameters to make sure they are valid. For example, it is verified

that the aircraft heading is between 0o and 360o, and the descent angle of the aircraft and

terrain angle is between 0o and 90o. Then the web application executes the geoprocessing

service by sending the parameters shown in Table 5-1.

The basic mode is for users who do not have all the information required to calculate

the debris area. These users only need to enter manufacturer, model, and heading of the

aircraft. The remaining parameters will take default values hardcoded based on the input

of Fon Duke, Manager at Mojave Desert Ecosystem Program (MDEP). The hardcoded

parameters were adopted to be similar to what an aircraft would experience during a

landing maneuver, which covered a majority of crash incidents and delivered reasonable

28

results with minimal user input. Table 5-4 shows the default values considered in basic

mode which include speed, angle of descent and altitude of aircraft, ground wind speed,

ground wind direction, terrain angle, and terrain characteristic. Since the majority of the

parameters are hardcoded, it is likely that the results of the basic mode will not be

especially accurate. However, it will give a direction for first responders to begin their

work.

Table 5-3: Default Parameters of Basic Mode in RoCS Web Application.

Parameter Unit Default Value

Speed of Aircraft Knot 1/4th of maximum speed of aircraft

Angle of Descent Degree 60

Ground Wind Speed Knot 0

Ground Wind Direction degree 0

Terrain Angle degree 0

Terrain Characteristic None/Uphill/Downhill None

Altitude of Aircraft feet AGL 1000

The advanced mode is for users who know all the required parameters. For this reason,

the advanced mode generates results that are more realistic. Figure 5-8 shows the home

page, basic mode, and advanced mode of the RoCS web application.

29

 Figu

re 5-8: Screen Shots of RoCS Web Application

30

After clicking the Location button on the basic or advanced page, the user is sent to a

map with current location zoomed in. The user can pan, zoom-in, and zoom-out to find

and select the crash location. Figure 5-9 shows the location page in the RoCS web

application. The red dot on the screen means the location has been captured by the

application. If the user clicks on Finish without selecting the location, a blank map is

displayed in the results page.

Figure 5-9: Location page of RoCS

Once the location of a crash is selected, the Finish button sends all parameters to the

RoCS geoprocessing service and takes the user to the results page where the debris area

is displayed. Figure 5-10 shows the results page of the application where the high,

medium, and low concentration areas are displayed on a basemap, which can be panned,

zoomed in, or zoomed out.

31

Figure 5-10: Results page of RoCS

A menu is provided on this page for the user to toggle basemap, save the map as a

JPG image, email a link to the map image, or toggle the US National Grid as a layer on

the map. Figure 5-11 shows a screen shot of the menu on the results page.

32

Figure 5-11: Menu of RoCS

The instructions page is a systematic guide for how to use the web application.

Finally, Figure 5-12 shows the Add Airplane page that lets the user add a new airplane to

the database or download the data of existing airplanes.

33

Figure 5-12: Add/Download Aircraft page of RoCS

The web application is published on the Mojave Desert Ecosystem Program (MDEP)

server and is available for public use. It can be accessed from URL

http://crash.mojavedata.gov.

5.4 Summary

A Python script tool was developed using Python and the ArcMap 10.2 toolbox. This tool

was published on ArcGIS for Server as a geoprocessing service and used in the web

application to generate the debris area. The web application was designed using HTML,

CSS, PHP, and JavaScript so that it can be accessed from any mobile device. PHP

ensured secure connection between the application and the aircraft database. The

database also acts as an initiative to crowdsource details of various aircrafts.

The geoprocessing service considers the terrain as flat if the user does not enter

terrain characteristics. Therefore, a revised Python script tool was developed to consider

the terrain parameters from the Esri elevation service instead of values entered by users.

http://crash.mojavedata.gov/

34

However, the revised tool was not used in the web application because each time the

elevation service is executed, it consumes credits from the associated ArcGIS Online

account, which is not desired by the client.

35

Chapter 6 – Results and Analysis

This chapter discusses the results obtained from the Recovery of Crash Site (RoCS)

geoprocessing service and the revised Python tool. Section 6.1 explains the effect of input

parameters on the estimated debris field. Section 6.2 compares the actual debris area with

the area generated by the RoCS geoprocessing tools. Model accuracy and efficiency

measures were developed and compared among four test cases. The impact of terrain on

debris estimation is discussed in Section 6.3 with a focus on the revised Python tool.

Section 6.4 explains the various tests conducted to validate the web application.

6.1 Effects of Parameters on the Estimated Debris Field

Various parameters related to the airplane, crash, and terrain are given as inputs to the

debris model. This section discusses the effect of each parameter on the estimated debris

field. Table 5-1 indicate whether the respective parameter is entered by the user or

extracted from the airplane database.

Speed of aircraft at the time of impact is required in knots (kts). One knot is a unit of

speed equivalent to 1.151 miles per hour. Speed of aircraft is directly proportional to the

resultant debris field. If all the other parameters are considered constant, increase in

speed increases the debris area, whereas if speed is reduced, debris area decreases.

Altitude of aircraft before the initial impact is required in feet Above Ground Level

(ft AGL). As the altitude is increased, the estimated debris field increases as well.

Direction of the aircraft at the time of initial impact is called the heading. It is

required in degrees, 0o being North and increasing in a clockwise direction (Figure 5-5).

The heading of the aircraft does not affect the debris throw distance, but changes the

direction in which it is thrown.

Descent is the angle between the horizontal ground and the path of the aircraft at the

point of initial impact. The descent angle must be between 0o and 90o. Assuming all the

other parameters are constant, increase in descent angle reduces the debris throw

distance, and vice versa.

Frontal area is the measurement of the area presented to the airflow in square feet

(Oldham, 1990). Frontal area of aircraft and the estimated debris field are inversely

proportional. Therefore, with increase in frontal area, the debris field reduces.

Drag coefficient (Cd) refers to the horizontal and vertical aerodynamic force

experienced by the aircraft. As the coefficient increases, the estimated debris field

decreases because of the force experienced by the aircraft.

There are multiple weight values associated with an aircraft, such as maximum

weight while takeoff, maximum weight while landing, weight of empty aircraft, weight

of aircraft with fuel, and more. Based on the client’s recommendation, the maximum

weight of aircraft during takeoff was considered for the adapted debris model. The debris

throw distance is correlated positively with the weight of the aircraft.

Wingspan is the length from the tip of one wing to the tip of the other wing, in feet.

Wingspan does not change the debris throw distance, but it affects the estimated spread

area of the debris. An increase in wingspan will result in an increase in the width of the

debris throw area.

36

Ground level is the elevation of initial impact point relative to mean sea level. It is

measured in feet Mean Sea Level (ft MSL).

Ground level wind speed is considered in knots and wind direction is measured in

degrees, with 0o being North (Figure 5-5). If the direction of wind is the same as the

aircraft heading, the debris throw distance increases. However, the distance is reduced if

the direction of wind is against the heading of aircraft.

Terrain angle must be between 0o and 90o. If terrain is uphill, an increase in terrain

angle reduces the debris throw distance. However if terrain is downhill, the debris throw

distance increases. Refer to Section 2.2 for the effect of terrain on debris area.

6.2 Model Validation

Adapted from the Crash Site Debris Recovery Mobile Application (CSDRMA) (Janzen,

2012), the model implemented by the RoCS geoprocessing service predicts the possible

debris fields from an airplane crash by considering speed, altitude, aircraft heading,

descent, frontal area, drag coefficient, weight, wingspan of the aircraft, ground level,

ground level wind speed, ground level wind direction, terrain angle, and terrain

characteristic. To evaluate model performance, the predicted debris fields need to be

compared to actual debris fields. One approach is to compare the percentage of the area

shared by both the types of fields. However, the actual debris fields were not very

accurate as not all debris were recorded. To represent the better geographic extent of

actual debris fields, a convex hull of the actual debris fields may be used for comparison.

Both approaches were implemented in this study with a focus on the latter.

Model performance was evaluated from two perspectives: model accuracy and

model efficiency. The model accuracy measure assesses how accurately the model output

is when compared to the ground truth. This measure is calculated as the percentage of

area in common between the convex hull of the actual debris field and the RoCS

generated debris field. The model performs well if most of the actual debris fields fall

into the predicted area. The model efficiency measure evaluates how much the model

over-predicts the debris area. An accurate model output might not be efficient if a large

portion of the predicted debris area does not contain any actual debris observations. The

measure is calculated as the percentage of the RoCS generated debris area that overlaps

with the actual debris field. The model is more efficient when there is less over-

prediction.

Four test datasets described in Section 4.3 were used to assess model accuracy and

efficiency. Table 6-1 summarizes the input parameters for the four test cases including

the 1991 Colorado crash, the 2008 London crash, the 2011 New Mexico crash, and the

2013 Alabama crash. The terrains were assumed flat in this stage as no specific terrain

parameters were provided.

37

Table 6–1: Input for Test Cases

 Colorado

Crash,

1991

Alabama

Crash,

2013

London

Crash,

2008

New Mexico

Crash, 2011

Speed of Aircraft (kts) 200 120 106 145

Altitude of Aircraft (ft AGL) 5,705 1,000 200 1,000

Aircraft Heading (degree) 20 175 270 270

Descent of Aircraft (degree) 80 60 45 60

Frontal Area of Aircraft (sq ft) 1,098 2,799 525 500

Drag Coefficient 0.03 0.03 0.03 0.02

Weight of Aircraft (lbs) 115,500 308,650 460,000 99,600

Wingspan (ft) 93 147.11 199.92 99.6

Ground Level (ft MSL) 5,704 650 77 999

Ground Level Wind Speed (kts) 22 0 0 0

Ground Level Wind Direction

(degree)

300 0 0 0

Angle of Terrain (degree) 0 0 0 0

Terrain Characteristic

(None/Uphill/Downhill)

None None None None

Figure 6-1 shows an example of how to use the RoCS tool in ArcGIS 10.2 to

calculate the predicted debris areas for the 1991 Colorado crash. First, the point of

contact of airplane during the crash was given as an input. Location and name of the

output feature class was then specified. All the remaining values such as speed, altitude,

heading, descent, frontal area, drag coefficient, weight, and wingspan of aircraft, ground

level, ground level wind speed, ground level wind direction, and angle of terrain with

upslope or downslope were entered based on the specifications in Table 6-1.

38

Figure 6-1: RoCS Geoprocessing Tool

Once the tool ran, the debris area was calculated and displayed on the map in blue,

yellow, and orange, showing the low, medium, and high debris concentrations

respectively (Figure 6-2).

39

Figure 6-2: RoCS Generated Debris Area

A convex hull of the actual debris fields was constructed to represent the extent of

debris. Figure 6-3 shows the Minimum Bounding Geometry tool used to generate the

convex hull of the actual debris fields, where the feature class of the actual debris field

was given as the input, and geometry type was entered as CONVEX_HULL.

40

Figure 6-3: Minimum Boundary Geometry tool (ArcMap 10.2)

The convex hull of the actual debris fields of the Colorado Crash is shown in Figure

6-4 (a). Almost all of actual debris fields fall into the predicted debris area, while there is

still a large portion of the predicted area not containing any debris observations. Using

the same procedure, the map outputs of the other three test cases were developed (Figure

6-4 b, c, and d). It appears that the model over-predicts debris fields for both Colorado

and Alabama Crash, but under-predicts debris field for New Mexico Crash. The

estimation of the London Crash seems to fall in between.

41

(a) (b)

(c) (d)

Figure 6-4: Comparison of Predicted and Actual Debris Fields

To quantify the comparison, the aforementioned two measures, accuracy and

efficiency measures, were calculated using a few common GIS operations, such as

intersection and field calculation. The accuracy measure, the percentage of the convex

hull overlapping the predicted areas, was calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝐴𝑟𝑒𝑎

𝐶𝑜𝑛𝑣𝑒𝑥 𝐻𝑢𝑙𝑙 𝐴𝑟𝑒𝑎
 × 100

42

The efficiency measure, the percentage of RoCS area overlapping the convex hull,

was calculated as follows:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝐴𝑟𝑒𝑎

𝑅𝑜𝐶𝑆 𝐷𝑒𝑏𝑟𝑖𝑠 𝐹𝑖𝑒𝑙𝑑 𝐴𝑟𝑒𝑎
 × 100

Table 6-2 presents the two measures for all four test cases. For the Colorado,

Alabama, and London crashes, the predicted areas cover most of the convex hulls of the

actual debris fields. This indicates that the model accurately predicts the debris fields.

However, the efficiency of the model is rather low because at most 13% of the predicted

area contains any debris observations. In contrast, accuracy and efficiency of the model

are comparable for the New Mexico Crash. About 40% of the actual debris field is

covered by the predicted area and around 40% of the predicted area contains debris

observation. These four test cases suggest that the debris trajectory model has a

reasonable accuracy but poor efficiency.

Table 6–2: Model Accuracy and Efficiency Measures

Crash Accuracy Measure (%) Efficiency Measure (%)

Colorado Crash 100.00 12.93

Alabama Crash 100.00 2.87

London Crash 100.00 9.03

New Mexico Crash 41.18 36.66

As mentioned in the beginning of this section, accuracy can also be measured using

the area of actual debris field instead of its convex hull. This approach reduces the

accuracy of the model to a great extent; for example, the accuracy of the New Mexico

crash changed from 41% down to about 10% when the area of actual debris fields was

considered. This is because the convex hull represents the geographic spread of the actual

debris fields, not the actual area where debris was found.

6.3 Terrain Impact on Debris Prediction

It would be desirable if the tool can automatically extract terrain characteristics when

terrain parameters are not available. This function was implemented in a revised Python

tool (Section 5.2), but was not published due to the ArcGIS Online credit concern.

Compared to the RoCS geoprocessing tool, the input parameters required for this

tool are the same except the terrain parameters (Figure 6-5). In the RoCS tool, if the user

does not enter terrain parameters, the terrain is considered to be flat. The revised tool

overcomes this drawback by extracting the terrain parameters from the Esri Summarize

Elevation Service (Esri, 2015d). Note that the slope extracted from the Esri Elevation

Service only refers to the slope at the point of impact, which does not consider slope

variations along the distance of throw. Not being able to accommodate the terrain

characteristics along the trajectories of debris remains one of the limitations of the current

debris model.

43

Figure 6-5: Revised Python Tool

Using this tool, the debris fields of the four test aircraft crashes were re-calculated

and the outputs were compared to the predicted areas generated under the assumption of

flat terrain (Figure 6-5).

44

(a) (b)

(b) (d)

Figure 6-6: Difference in Outputs of the RoCS and the Revised Python Tool

When the tool was executed for the four datasets, the slope was calculated as 0.44o

uphill for the Colorado Crash, 3.66o uphill for the Alabama Crash, 0.41o downhill for the

New Mexico Crash, and 0.44o uphill for the London Crash. Since the calculated slope of

the Alabama Crash is the largest as compared to the other three terrain settings, the

generated debris area differs the most as compared to the RoCS generated area as shown

in Figure 6-6 (b). In addition, the uphill terrains reduced the distance of throw (Colorado

and Alabama crashes) while the downhill terrain enlarged the distance of throw (New

Mexico crash). The London and Colorado crashes have similar terrain characteristics,

however the other parameters, such as the angle of descent and the type of airplane, were

different, which resulted in dissimilar decreases in debris fields.

45

6.4 Web Application Testing

Since the main goal of the project was to increase the target audience, the RoCS web

application was developed in HTML, CSS, JavaScript, and PHP. To make sure that the

application was platform independent, features like button click, drop down load, pan of

map, zoom-in of map, zoom-out of map, print as JPG, email, toggle of basemap, adding

aircraft, and saving airplane data as Excel were tested on different operating systems and

devices. These operating systems included iOS 8.3, Blackberry 10.3.1.2576, Android

5.0.2, and Android 4.2.2 JDQ39. In addition, Mojave Desert Ecosystem Program

(MDEP) tested the application with Android 4.0, Android 4.4, and iOS 6. The RoCS web

application was tested on devices iPhone, iPad, iPod, Motorola, Samsung, and LG. The

same features were tested successfully on Internet Explorer 11, Mozilla Firefox 38.0.5,

Google Chrome 39, Opera 30, and Safari 5.1.7.

To test the user interface of the web application, the client conducted a test survey to

make sure that all the features are easy to locate and use. The users involved in this

survey were professional first responders and investigators. Based on the feedback

received in the test survey, modifications were made to the user interface.

6.5 Summary

Fon Duke, Manager of the Mojave Desert Ecosystem Program (MDEP), provided the

data required for testing. The data were originally in World Geodetic System (WGS)

1984 and was projected to WGS 1984 World Mercator to calculate the area. The

percentage of actual debris fields covered by the RoCS generated field was around 81%,

but the percentage of RoCS debris field that matched the actual debris field was much

less. Therefore, the tool provides a direction for the first responders and the investigators,

but they cannot rely on it completely. More parameters can be incorporated in this model

to make it more accurate.

The web application was accessible from different devices with varying operating

systems. As a result, the target audience is expected to increase significantly.

47

Chapter 7 – Conclusions and Future Work

The objectives of this project were to develop a database for airplanes, modify the

existing geoprocessing script, and develop a web application that can be used by any

device which has an Internet connection, a GPS service, and a compatible browser.

Therefore, a database was developed in Microsoft SQL 2008 R2, the Python script was

modified and published on ArcGIS for Server, and a platform independent web

application was developed. The application was tested successfully on devices with

different operating systems. In addition, a revised Python script was developed to include

terrain parameters more efficiently. The database, the geoprocessing service, and the web

application were published on the client’s server and are available for public use.

7.1 Future Work

Although many parameters were considered in the debris model implemented in this

project, the model itself could be improved in the future by adding other parameters, such

as land cover.

A revised Python script was developed to improve results of the effect of terrain on

the calculated debris area. Since this script uses ArcGIS Online credits (Esri, 2015d), it

was not merged with the delivered solution. This script could be modified to calculate the

terrain parameters without utilizing the credits. This could be done by using or

developing an open source tool that extracts terrain slope and aspect of a point, line, or

polygon feature from a Digital Elevation Model (DEM).

To validate the debris model, a convex hull was created for the actual debris area

data of various crashes provided by the Mojave Data Ecosystem Program (MDEP). These

convex hulls indicate a fan-shaped debris area rather than the oval debris area considered

for this project. Therefore, modifications can be made in the RoCS geoprocessing service

to generate fan-shaped debris areas.

The estimated debris area is shown on a topographic basemap with an option to

toggle the basemap between Esri Imagery without labels, Esri Topographic, or Esri

Streets. This estimated area is in the form of three 2-dimensional ovals displaying high,

medium, and low concentrations of debris. Using the upcoming version of ArcGIS API

for JavaScript, this output can be modified to 3-dimensional space to provide better

visualization.

The model of the Recovery of Crash Site (RoCS) web application could be modified

so that it can work in an offline mode. This would help the first responders, cleanup

crews, and investigators use the application even if an internet connection is unavailable.

The geoprocessing service uses various ArcGIS 10.2 tools and is published on

ArcGIS for Server. The script can be modified to use QGIS tools and can be published on

GeoServer to make the application 100% open source.

The web application can be modified to include editing features, which can be used

by the first responders and the investigators to edit the actual debris field in real time. In

addition, more layers such as police stations, hospitals, fire stations, and airports can be

added to the results page with toggle functionality.

48

7.2 Summary

In summary, the Recovery of Crash Site (RoCS) web application was successful as it will

assist first responders, cleanup crews, and investigators to initiate their work at an

airplane crash site. It can be accessed from any device which has an internet connection,

a GPS, and any compatible browser. The application results in an estimated debris field

area with high, medium, and low concentrations that can be emailed or saved as a JPG

file. In addition, a database is used as an initiative to crowdsource airplane information.

49

Works Cited

aerospaceweb.org. (2011, May 30). Aircraft Museum. Retrieved from

http://www.aerospaceweb.org/aircraft/

City of Rancho Cucamonga, California. (n.d.). GIS Maps and Data. Retrieved June 9,

2015, from City of Rancho Cucamonga, California:

http://www.cityofrc.us/cityhall/admin/gis/mapsdata/default.asp

Coltman, J., Ingen, C., Johnson, N., & Zimmerman, R. (1989). Aircraft Crash Survival

Design Guide. Volume 2. Aircraft Design Crash Impact Conditions and Human

Tolerance. Phoenix, Arizona: SIMULA INC. Retrieved from

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD

A218435

Department for Transport (Air Accidents Investigation Branch). (2010). Report on the

accident to Boeing 777-236ER, G-YMMM, at London Heathrow Airport on 17

January 2008 (Report EW/C2008/01/01). United Kingdom.

Esri. (2015a). GIS Supports Gov 2.0. Retrieved June 9, 2015, from

http://www.esri.com/industries/gov20

Esri. (2015b). GIS for Business. Retrieved June 9, 2015, from

http://www.esri.com/industries/business

Esri. (2015c). GIS Education Research. Retrieved June 9, 2015, from

http://edcommunity.esri.com/educational-roles/Researchers

Esri. (2015d). ArcGIS REST API: Elevation Analysis Services. Retrieved June 16, 2015,

from https://developers.arcgis.com/rest/elevation/api-reference/summarize-

elevation.htm

Esri. (2015e). Accessing ArcGIS Online Services. Retrieved June 19, 2015, from

https://developers.arcgis.com/authentication/accessing-arcgis-online-

services/#getting-a-token

Federal Aviation Administration. (2009, December 11). Aircraft Characteristics

Database. Retrieved from

http://www.faa.gov/airports/engineering/aircraft_char_database/media/aircraft_ch

ar_122009.xls

Fu, P., & Sun, J. (2011). Web GIS, Principles and Applications. Redlands, California:

ESRI Press.

Janzen, N. R. (2012, July). Crash Site Debris Recovery Mobile Application (Master's

thesis, University of Redlands). Retrieved from

http://inspire.redlands.edu/gis_gradproj

Lin, M. Y., Larson, E. W., & Collins, J. D. (2003, June). Determination of Debris Risk to

the Public Due to the Columbia Breakup During Reentry. Retrieved from

Accident Investigation Board:

http://caib1.nasa.gov/news/report/pdf/vol2/part16.pdf

Mojave Desert Ecosystem Program. (n.d.). About. Retrieved November 2014, from

https://www.mojavedata.gov/about.html

50

National Transportation Safety Board. (2001). Uncontrolled Descent and Collision With

Terrain, United Airlines Flight 585, Boeing 737-200, N999UA, 4 Miles South of

Colorado Springs, Municipal Airport, Colorado Springs, Colorado, March 3,

1991 (Aircraft Accident Report NTSB/AAR-01/01). Washington D.C.: National

Transportation Safety Board.

National Transportation Safety Board. (2012). Crash During Experimental Test Flight,

Gulfstream Aerospace Corporation GVI (G650), N652GD, Roswell, New Mexico,

April 2, 2011 (Aircraft Accident Report NTSB/AAR-12/02). Washington D.C.:

National Transportation Safety Board.

National Transportation Safety Board. (2014). Crash During a Nighttime Nonprecision

Instrument Approach to Landing, UPS Flight 1354, Airbus A300-600, N155UP,

Birmingham, Alabama, August 14, 2013 (Aircraft Accident Report NTSB/AAR-

14/02). Washington D. C.: National Transportation Safety Board.

Oldham, H. (1990). Aircraft debris trajectory analysis. Retrieved from Proairshow, LLC:

http://proairshow.com/aircraft_debris.htm

Palt, K. (2015, June 28). Aircraft Encyclopedia. Retrieved from

http://www.flugzeuginfo.net/acdata_en.php

Point Blue Conservation Science. (2014). Whale Aware. Retrieved June 9, 2015, from

Download Whale mAPP:

http://www.whaleaware.org/index.php?page=download-whale-mapp-coming-

soon

Sarconi, M. (2013). A Prototype System for Simulating the Risks of Sub-Orbital Space

Flight for Commercial Aviation. Retrieved from University of Glasgow:

http://www.dcs.gla.ac.uk/~pat/4yProjects/HallOfFame/reports2013/SarconiMarco

.pdf

Söylemez, E., & Usul, N. (2006). Utility Of GIS In Search And Rescue Operations.

Retrieved November 2014, from

http://proceedings.esri.com/library/userconf/proc06/papers/papers/pap_1908.pdf

U.S. Bank. (2015). U.S. Bank Locations. Retrieved June 9, 2015, from

https://www.usbank.com/locations/

51

Appendix A. Crash Site Debris Recovery Mobile

Application (CSDRMA) Python Script

CSDRMA Python script that was developed by Nicholas Janzen in 2012.

#Crash Site Debris Recovery Mobile Application (CSDRMA) Geoprocessing Script Tool

#Trajectory Analysis for Aircraft Debris

for use as a tool script in ArcGIS 10.0

(requires feature class input of crash location)

#Nick Janzen

#MS GIS Program

#University of Redlands

#Redlands, California, USA

#July 2012

#Based on the "TAPS" program for GW-BASIC, Hugh Oldham, the

"Thrown Rotor Blade Trajectory Analysis" for Microsoft

Excel, T Watson (http://proairshow.com/aircraft_debris.htm),

and excerpts from the book "Aircraft Accident Investigation -

2nd Edition", Richard Wood & Robert Sweginnis

#Import Modules

import math, sys, arcpy, os

#ArcGIS Desktop Input

inputcrash = arcpy.GetParameterAsText(0)

workspace = arcpy.GetParameterAsText(1)

VEL = float (arcpy.GetParameterAsText(2))

ALT = float (arcpy.GetParameterAsText(3))

Course = float (arcpy.GetParameterAsText(4))

ANGA = float (arcpy.GetParameterAsText(5))

FAREA = float (arcpy.GetParameterAsText(6))

CD = float (arcpy.GetParameterAsText(7))

WT = float (arcpy.GetParameterAsText(8))

wingspan = float (arcpy.GetParameterAsText(9))

Groundlevel = float (arcpy.GetParameterAsText(10))

SWIND = float (arcpy.GetParameterAsText(11))

DWIND = float (arcpy.GetParameterAsText(12))

TANGA = float (arcpy.GetParameterAsText(13))

SLOPE = arcpy.GetParameterAsText(14)

#Input Checks

#Course Check I

if Course >= 1 and Course <= 360:

 Course = Course

52

else:

 arcpy.AddError("Error: Flight Path Course input must be 1-360")

 sys.exit()

#ANGA Check

if ANGA >= 0 and ANGA <= 90:

 ANGA = ANGA

else:

 arcpy.AddError("Error: Descent of Aircraft input must be 0-90")

 sys.exit()

#Course Check II

if Course < DWIND:

 WINDC = (Course - DWIND) * (math.pi/180) #convert to radians

 WINDC = math.cos(WINDC) * SWIND

else:

 WINDC = (DWIND-Course) * (math.pi/180) #convert to radians

 WINDC = math.cos(WINDC) * SWIND

#TANGA Check

if TANGA >= 0 and TANGA <=90:

 TANGA = TANGA

else:

 arcpy.AddError("Error: Angle of Terrain for Aircraft-Ground Impact input must be 1-

90")

 sys.exit()

#SLOPE Check

if SLOPE == "Upslope":

 ANGA = ANGA + TANGA

elif SLOPE == "Downslope":

 ANGA = ANGA - TANGA

elif SLOPE == "None":

 ANGA = ANGA

else:

 arcpy.AddError("Error: Aircraft-Ground Impact Characteristic input must be 'None',

'Upslope' or 'Downslope'")

 sys.exit()

#Preliminary Data Processing

wingspan = wingspan/2

CDS = CD * FAREA

SLUGS = 0.002378 * (1-(6.875**-6*ALT))**4.2561

GSLUGS = 0.002378 * (1-(6.875**-6*Groundlevel))**4.2561

TVEL = (2*WT/(CDS*SLUGS))**0.5

TVELKTS = TVEL * 0.5921052

53

GLTVEL = (2*WT/(CDS*GSLUGS))**0.5

GLTVELKTS = GLTVEL * 0.5921052

DT = 0.05

WINDone = abs(WINDC * 6080/3600)

T = 0

X = 0

Z = ALT

DTtwo = DT * DT

UVprep = ANGA * (math.pi/180) #convert to radians

U = 1.69 * VEL * math.cos(UVprep)

V = 1.69 * VEL * math.sin(UVprep)

W = WINDone * (Z/30) ** 0.26

UO = U

VO = V

Zmax = 0

FPEANG = 0

#Data Processing

while Z > Groundlevel:

 VELtwo = U*U+V*V

 if U == 0:

 U=.01

 else:

 U = U

 FP = math.atan(V/U)

 if U<0 and V<0:

 K = -1

 else:

 K = 1

 DRAG = (SLUGS/2)*VELtwo*CDS

 AX = -DRAG * math.cos(FP) * 32.2 * K/WT

 AZ = -DRAG * math.sin(FP) * 32.2/WT - 32.2

 UO = UO + AX * DT

 V = V + AZ * DT

 U = UO + W

 VO = V

 FPE = math.atan(VO/UO)

 X = X + UO * DT + 0.5 * AX * DTtwo

 Z = Z + VO * DT + 0.5 * AZ * DTtwo

 if Z > Groundlevel:

 T = T + DT

 else:

 T = T

 if abs(Z)>abs(Zmax):

 Zmax = Z ,m * (180/math.pi) #convert to degrees

 else:

54

 Zmax = Zmax

#Output Processing

impactkts = (((UO*UO+VO*VO)**0.5)*0.68182)

FPE = FPE * (180/math.pi) #convert to degrees

#Spatial Processing

WKID = 4326 #WGS84

sr = arcpy.SpatialReference()

sr.factoryCode = WKID

arcpy.env.outputCoordinateSystem = sr

arcpy.env.workspace = "in_memory"

arcpy.CreateFeatureclass_management ("in_memory", "Bearing")

arcpy.MakeTableView_management ("Bearing","in_memory/BearingTable")

arcpy.AddField_management ("in_memory/BearingTable", "x_lon", "DOUBLE")

arcpy.AddField_management ("in_memory/BearingTable", "y_lat", "DOUBLE")

arcpy.AddField_management ("in_memory/BearingTable", "length", "DOUBLE")

arcpy.AddField_management ("in_memory/BearingTable", "bearing", "DOUBLE")

cur = arcpy.InsertCursor("in_memory/BearingTable")

row = cur.newRow()

arcpy.AddXY_management(inputcrash)

icrows = arcpy.SearchCursor(inputcrash)

for icrow in icrows:

 xlon = icrow.getValue("POINT_X")

 ylat = icrow.getValue("POINT_Y")

row.x_lon = xlon

row.y_lat = ylat

row.length = X

row.bearing = Course

cur.insertRow(row)

del cur, row

arcpy.BearingDistanceToLine_management("in_memory/BearingTable", "BearingLine",

"x_lon", "y_lat", "length","FEET", "bearing","", "","", sr)

#Spatial Outputs

buffer = arcpy.Buffer_analysis("BearingLine", workspace, str(wingspan) + " feet",

"FULL", "ROUND", "NONE")

#Output

arcpy.AddMessage("Debris Terminal Velocity (kts): " + str(TVELKTS))

arcpy.AddMessage("Time to Impact (sec): " + str(T))

arcpy.AddMessage("Debris Throw Distance (ft): " + str(X))

arcpy.AddMessage("Angle of Impact (deg): " + str(FPE))

arcpy.AddMessage("Speed of Impact (kts): " + str(impactkts))

arcpy.AddMessage("Max Altitude of Debris (ft): " + str(Zmax))

arcpy.AddMessage("Analysis Complete")

55

Appendix B. Recovery of Crash Site (RoCS) Python

Script

RoCS Python script that is based on Crash Site Debris Recovery Mobile application

(CSDRMA) by Nicholas Janzen in 2012 and Trajectory Analysis Program (TAP) by

Oldham in 1990.

#Recovery of Crash Site (RoCS) Web Application Geoprocessing Script Tool

#Shilpi Jain

#MS GIS Program

#University of Redlands

#Redlands, California, USA

#August 2015

#Based on the Crash Site Debris Recovery Mobile Application (CSDRMA)

Geoprocessing Script Tool

Trajectory Analysis for Aircraft Debris

for use as a tool script in ArcGIS 10.0, Nick Janzen, July 2012

(https://www.mojavedata.gov/data_crash/MIP_NickJanzen.pdf), and

#Trajectory Analysis Program for GW-BASIC, Hugh Oldham,

(http://proairshow.com/aircraft_debris.htm)

#Import Modules

import math, sys, arcpy, os

#ArcGIS Desktop Input

inputcrash = arcpy.GetParameterAsText(0)

workspace = arcpy.GetParameterAsText(1)

VEL = float (arcpy.GetParameterAsText(2))

ALT = float (arcpy.GetParameterAsText(3))

Course = float (arcpy.GetParameterAsText(4))

ANGA = float (arcpy.GetParameterAsText(5))

FAREA = float (arcpy.GetParameterAsText(6))

CD = float (arcpy.GetParameterAsText(7))

WT = float (arcpy.GetParameterAsText(8))

wingspan = float (arcpy.GetParameterAsText(9))

Groundlevel = float (arcpy.GetParameterAsText(10))

SWIND = float (arcpy.GetParameterAsText(11))

DWIND = float (arcpy.GetParameterAsText(12))

TANGA = float (arcpy.GetParameterAsText(13))

SLOPE = arcpy.GetParameterAsText(14)

#Input Checks

#Course Check I

if Course >= 0 and Course <= 360:

 Course = Course

56

else:

 arcpy.AddError("Error: Flight Path Course input must be 0-360")

 sys.exit()

#ANGA Check

if ANGA >= 0 and ANGA <= 90:

 ANGA = ANGA

else:

 arcpy.AddError("Error: Descent of Aircraft input must be 0-90")

 sys.exit()

#Course Check II

if Course < DWIND:

 WINDC = (Course - DWIND) * (math.pi/180) #convert to radians

 WINDC = math.cos(WINDC) * SWIND

else:

 WINDC = (DWIND-Course) * (math.pi/180) #convert to radians

 WINDC = math.cos(WINDC) * SWIND

#TANGA Check

if TANGA >= 0 and TANGA <=90:

 TANGA = TANGA

else:

 arcpy.AddError("Error: Angle of Terrain for Aircraft-Ground Impact input must be 0-

90")

 sys.exit()

#SLOPE Check

if SLOPE == "Upslope":

 ANGA = ANGA + TANGA

elif SLOPE == "Downslope":

 ANGA = ANGA - TANGA

elif SLOPE == "None":

 ANGA = ANGA

else:

 arcpy.AddError("Error: Aircraft-Ground Impact Characteristic input must be 'None',

'Upslope' or 'Downslope'")

 sys.exit()

#Preliminary Data Processing

wingspan = wingspan/2

CDS = CD * FAREA

SLUGS = 0.002378 * (1-(6.875**-6*ALT))**4.2561

GSLUGS = 0.002378 * (1-(6.875**-6*Groundlevel))**4.2561

TVEL = (2*WT/(CDS*SLUGS))**0.5

TVELKTS = TVEL * 0.5921052

57

GLTVEL = (2*WT/(CDS*GSLUGS))**0.5

GLTVELKTS = GLTVEL * 0.5921052

DT = 0.05

WINDone = abs(WINDC * 6080/3600)

T = 0

X = 0

Z = ALT

DTtwo = DT * DT

UVprep = ANGA * (math.pi/180) #convert to radians

U = 1.69 * VEL * math.cos(UVprep)

V = 1.69 * VEL * math.sin(UVprep)

W = WINDone * (Z/30) ** 0.26

UO = U

VO = V

Zmax = 0

FPEANG = 0

#Data Processing

while Z > Groundlevel:

 VELtwo = U*U+V*V

 if U == 0:

 U=.01

 else:

 U = U

 FP = math.atan(V/U)

 if U<0 and V<0:

 K = -1

 else:

 K = 1

 DRAG = (SLUGS/2)*VELtwo*CDS

 AX = -DRAG * math.cos(FP) * 32.2 * K/WT

 AZ = -DRAG * math.sin(FP) * 32.2/WT - 32.2

 UO = UO + AX * DT

 V = V + AZ * DT

 U = UO + W

 VO = V

 FPE = math.atan(VO/UO)

 X = X + UO * DT + 0.5 * AX * DTtwo

 Z = Z + VO * DT + 0.5 * AZ * DTtwo

 if Z > Groundlevel:

 T = T + DT

 else:

 T = T

 if abs(Z)>abs(Zmax):

 Zmax = Z * (180/math.pi) #convert to degrees

 else:

58

 Zmax = Zmax

#Output Processing

impactkts = (((UO*UO+VO*VO)**0.5)*0.68182)

FPE = FPE * (180/math.pi) #convert to degrees

#Spatial Processing

WKID = 4326 #WGS84

sr = arcpy.SpatialReference()

sr.factoryCode = WKID

arcpy.env.outputCoordinateSystem = sr

arcpy.env.workspace = "in_memory"

arcpy.CreateFeatureclass_management ("in_memory", "Bearing")

arcpy.DeleteRows_management("in_memory/Bearing")

arcpy.MakeTableView_management ("in_memory/Bearing","in_memory/BearingTable")

arcpy.AddField_management ("in_memory/BearingTable", "x_lon", "DOUBLE")

arcpy.AddField_management ("in_memory/BearingTable", "y_lat", "DOUBLE")

arcpy.AddField_management ("in_memory/BearingTable", "length", "DOUBLE")

arcpy.AddField_management ("in_memory/BearingTable", "bearing", "DOUBLE")

arcpy.AddField_management ("in_memory/BearingTable", "buffDist", "TEXT")

arcpy.AddXY_management(inputcrash)

icrows = arcpy.SearchCursor(inputcrash)

for icrow in icrows:

 xlon = icrow.getValue("POINT_X")

 ylat = icrow.getValue("POINT_Y")

#Shilpi Start

R = 6378.1 #Radius of Earth

d = wingspan * 0.0003048 #distance km

d2 = 2 * d

lat1 = math.radians(ylat)

lon1 = math.radians(xlon)

#Second Line

lat2 = math.asin(math.sin(lat1)*math.cos(d/R) +

 math.cos(lat1)*math.sin(d/R)*math.cos(math.radians(Course)))

lon2 = lon1 + math.atan2(math.sin(math.radians(Course))*math.sin(d/R)*math.cos(lat1),

 math.cos(d/R)-math.sin(lat1)*math.sin(lat2))

#Third Line

lat3 = math.asin(math.sin(lat2)*math.cos(d/R) +

59

 math.cos(lat2)*math.sin(d/R)*math.cos(math.radians(Course)))

lon3 = lon2 + math.atan2(math.sin(math.radians(Course))*math.sin(d/R)*math.cos(lat2),

 math.cos(d/R)-math.sin(lat2)*math.sin(lat3))

#Converting to degrees

lat2 = math.degrees(lat2)

lon2 = math.degrees(lon2)

lat3 = math.degrees(lat3)

lon3 = math.degrees(lon3)

#Updating buffer distance

cur = arcpy.InsertCursor("in_memory/BearingTable")

row = cur.newRow()

row.x_lon = lon3

row.y_lat = lat3

row.length = X

row.bearing = Course

row.buffDist = str(3 * wingspan) + " Feet"

cur.insertRow(row)

row.x_lon = lon2

row.y_lat = lat2

row.length = X

row.bearing = Course

row.buffDist = str(2 * wingspan) + " Feet"

cur.insertRow(row)

row.x_lon = xlon

row.y_lat = ylat

row.length = X

row.bearing = Course

row.buffDist = str(wingspan) + " Feet"

cur.insertRow(row)

del cur, row

#Shilpi End

arcpy.BearingDistanceToLine_management("in_memory/BearingTable",

"in_memory/BearingLine", "x_lon", "y_lat", "length","FEET", "bearing","", "","", sr)

#Shilpi Start

arcpy.AddField_management ("in_memory/BearingLine", "buffDist", "TEXT")

typeCursor = arcpy.da.UpdateCursor("in_memory/BearingLine", ["buffDist"])

cnt = 0

for row1 in typeCursor:

60

 if cnt == 0:

 row1[0] = str(3 * wingspan) + " Feet"

 cnt += 1

 elif cnt == 1:

 row1[0] = str(2 * wingspan) + " Feet"

 cnt += 1

 else:

 row1[0] = str(wingspan) + " Feet"

 typeCursor.updateRow(row1)

#Shilpi End

#Spatial Outputs

buffer = arcpy.Buffer_analysis("in_memory/BearingLine", workspace, "buffDist",

"FULL", "ROUND", "NONE")

#Output

arcpy.AddMessage("Debris Terminal Velocity (kts): " + str(TVELKTS))

arcpy.AddMessage("Time to Impact (sec): " + str(T))

arcpy.AddMessage("Debris Throw Distance (ft): " + str(X))

arcpy.AddMessage("Angle of Impact (deg): " + str(FPE))

arcpy.AddMessage("Speed of Impact (kts): " + str(impactkts))

arcpy.AddMessage("Max Altitude of Debris (ft): " + str(Zmax))

arcpy.AddMessage("Analysis Complete")

61

Appendix C. Automated Terrain Python Script

Modified RoCS Python script, used to extract terrain slope and aspect from the

Summarize Elevation Service.

#Recovery of Crash Site (RoCS) web application Geoprocessing Script Tool

#Shilpi Jain

#MS GIS Program

#University of Redlands

#Redlands, California, USA

#August 2015

#Based on the Trajectory Analysis Program for GW-BASIC, Hugh Oldham, the

"Thrown Rotor Blade Trajectory Analysis" for Microsoft

Excel, T Watson (http://proairshow.com/aircraft_debris.htm),

#Crash Site Debris Recovery Mobile Application (CSDRMA) Geoprocessing Script Tool

#Trajectory Analysis for Aircraft Debris

for use as a tool script in ArcGIS 10.0, Nick Janzen, July 2012

(https://www.mojavedata.gov/data_crash/MIP_NickJanzen.pdf)

#Import Modules

import math, sys, arcpy, os, urllib, urllib2, json, requests, time

def main():

 #ArcGIS Desktop Input

 inputcrash = arcpy.GetParameterAsText(0)

 workspace = arcpy.GetParameterAsText(1)

 VEL = float (arcpy.GetParameterAsText(2))

 ALT = float (arcpy.GetParameterAsText(3))

 Course = float (arcpy.GetParameterAsText(4))

 ANGA = float (arcpy.GetParameterAsText(5))

 FAREA = float (arcpy.GetParameterAsText(6))

 CD = float (arcpy.GetParameterAsText(7))

 WT = float (arcpy.GetParameterAsText(8))

 wingspan = float (arcpy.GetParameterAsText(9))

 Groundlevel = float (arcpy.GetParameterAsText(10))

 SWIND = float (arcpy.GetParameterAsText(11))

 DWIND = float (arcpy.GetParameterAsText(12))

 #Input Checks

 #Course Check I

 if Course >= 0 and Course <= 360:

 Course = Course

 else:

 arcpy.AddError("Error: Flight Path Course input must be 0-360")

 sys.exit()

62

 #ANGA Check

 if ANGA >= 0 and ANGA <= 90:

 ANGA = ANGA

 else:

 arcpy.AddError("Error: Descent of Aircraft input must be 0-90")

 sys.exit()

 #Course Check II

 if Course < DWIND:

 WINDC = (Course - DWIND) * (math.pi/180) #convert to radians

 WINDC = math.cos(WINDC) * SWIND

 else:

 WINDC = (DWIND-Course) * (math.pi/180) #convert to radians

 WINDC = math.cos(WINDC) * SWIND

 #Shill new start

 fc = arcpy.AddXY_management(inputcrash)

 token = getToken()

 print token

 arcpy.AddMessage("Tooken = " + token)

 ip = arcpy.FeatureSet()

 ip.load(fc)

 data =

requests.post('http://elevation.arcgis.com/arcgis/rest/services/Tools/Elevation/GPServer/S

ummarizeElevation/submitJob', params={

 'f': 'json',

 'token': token,

 'InputFeatures': ip.JSON,

 'IncludeSlopeAspect': 'true'

 })

 jsonData = data.json()

 print(jsonData)

 arcpy.AddMessage(jsonData)

 time.sleep(5)

 OP =

requests.post('http://elevation.arcgis.com/arcgis/rest/services/Tools/Elevation/GPServer/S

ummarizeElevation/jobs/'+ jsonData["jobId"] +'/results/OutputSummary?token='+ token

+'&f=json')

 opJason = OP.json()

 TANGA = opJason["value"]["features"][0]["attributes"]["MeanSlope"]

 print(TANGA)

 arcpy.AddMessage("Mean Slope = " + str(TANGA))

63

 Aspect = opJason["value"]["features"][0]["attributes"]["MeanAspect"]

 arcpy.AddMessage("Mean Aspect = " + str(Aspect))

 if (Aspect == -1): #Flat

 ANGA = ANGA

 elif ((Aspect - Course) <= 90): #DownHill

 ANGA = ANGA - TANGA

 elif ((Aspect - Course) > 90): #UpHill

 ANGA = ANGA + TANGA

 #Shill new end

 #Preliminary Data Processing

 wingspan = wingspan/2

 CDS = CD * FAREA

 SLUGS = 0.002378 * (1-(6.875**-6*ALT))**4.2561

 GSLUGS = 0.002378 * (1-(6.875**-6*Groundlevel))**4.2561

 TVEL = (2*WT/(CDS*SLUGS))**0.5

 TVELKTS = TVEL * 0.5921052

 GLTVEL = (2*WT/(CDS*GSLUGS))**0.5

 GLTVELKTS = GLTVEL * 0.5921052

 DT = 0.05

 WINDone = abs(WINDC * 6080/3600)

 T = 0

 X = 0

 Z = ALT

 DTtwo = DT * DT

 UVprep = ANGA * (math.pi/180) #convert to radians

 U = 1.69 * VEL * math.cos(UVprep)

 V = 1.69 * VEL * math.sin(UVprep)

 W = WINDone * (Z/30) ** 0.26

 UO = U

 VO = V

 Zmax = 0

 FPEANG = 0

 #Data Processing

 while Z > Groundlevel:

 VELtwo = U*U+V*V

 if U == 0:

 U=.01

 else:

 U = U

 FP = math.atan(V/U)

 if U<0 and V<0:

64

 K = -1

 else:

 K = 1

 DRAG = (SLUGS/2)*VELtwo*CDS

 AX = -DRAG * math.cos(FP) * 32.2 * K/WT

 AZ = -DRAG * math.sin(FP) * 32.2/WT - 32.2

 UO = UO + AX * DT

 V = V + AZ * DT

 U = UO + W

 VO = V

 FPE = math.atan(VO/UO)

 X = X + UO * DT + 0.5 * AX * DTtwo

 Z = Z + VO * DT + 0.5 * AZ * DTtwo

 if Z > Groundlevel:

 T = T + DT

 else:

 T = T

 if abs(Z)>abs(Zmax):

 Zmax = Z * (180/math.pi) #convert to degrees

 else:

 Zmax = Zmax

 #Output Processing

 impactkts = (((UO*UO+VO*VO)**0.5)*0.68182)

 FPE = FPE * (180/math.pi) #convert to degrees

 #Spatial Processing

 WKID = 4326 #WGS84

 sr = arcpy.SpatialReference()

 sr.factoryCode = WKID

 arcpy.env.outputCoordinateSystem = sr

 arcpy.env.workspace = "in_memory"

 arcpy.CreateFeatureclass_management ("in_memory", "Bearing")

 arcpy.DeleteRows_management("in_memory/Bearing")

 arcpy.MakeTableView_management

("in_memory/Bearing","in_memory/BearingTable")

 arcpy.AddField_management ("in_memory/BearingTable", "x_lon", "DOUBLE")

 arcpy.AddField_management ("in_memory/BearingTable", "y_lat", "DOUBLE")

 arcpy.AddField_management ("in_memory/BearingTable", "length", "DOUBLE")

 arcpy.AddField_management ("in_memory/BearingTable", "bearing", "DOUBLE")

 arcpy.AddField_management ("in_memory/BearingTable", "buffDist", "TEXT")

 icrows = arcpy.SearchCursor(inputcrash)

 for icrow in icrows:

 xlon = icrow.getValue("POINT_X")

65

 ylat = icrow.getValue("POINT_Y")

 #Shill Start

 #rad = Course * (math.pi/180) #converting Course frorm degree to radians

 R = 6378.1 #Radius of Earth

 d = wingspan * 0.0003048 #distance km

 d2 = 2 * d

 lat1 = math.radians(ylat)

 lon1 = math.radians(xlon)

 # x2 = xlon + (math.sin(math.radians(Course)) * (X/2))

 # y2 = ylat + (math.cos(math.radians(Course)) * (X/2))

 #Second Line

 lat2 = math.asin(math.sin(lat1)*math.cos(d/R) +

 math.cos(lat1)*math.sin(d/R)*math.cos(math.radians(Course)))

 lon2 = lon1 +

math.atan2(math.sin(math.radians(Course))*math.sin(d/R)*math.cos(lat1),

 math.cos(d/R)-math.sin(lat1)*math.sin(lat2))

 #Third Line

 # lat3 = math.asin(math.sin(lat1)*math.cos(d2/R) +

 # math.cos(lat1)*math.sin(d2/R)*math.cos(math.radians(Course)))

 #

 # lon3 = lon1 +

math.atan2(math.sin(math.radians(Course))*math.sin(d2/R)*math.cos(lat1),

 # math.cos(d2/R)-math.sin(lat1)*math.sin(lat2))

 lat3 = math.asin(math.sin(lat2)*math.cos(d/R) +

 math.cos(lat2)*math.sin(d/R)*math.cos(math.radians(Course)))

 lon3 = lon2 +

math.atan2(math.sin(math.radians(Course))*math.sin(d/R)*math.cos(lat2),

 math.cos(d/R)-math.sin(lat2)*math.sin(lat3))

 #Converting to degrees

 lat2 = math.degrees(lat2)

 lon2 = math.degrees(lon2)

 lat3 = math.degrees(lat3)

 lon3 = math.degrees(lon3)

 #Updating buffer distance

 cur = arcpy.InsertCursor("in_memory/BearingTable")

 row = cur.newRow()

66

 row.x_lon = lon3

 row.y_lat = lat3

 row.length = X

 row.bearing = Course

 row.buffDist = str(wingspan + wingspan/2 + wingspan/4) + " Feet"

 cur.insertRow(row)

 row.x_lon = lon2

 row.y_lat = lat2

 row.length = X

 row.bearing = Course

 row.buffDist = str(wingspan + wingspan/2) + " Feet"

 cur.insertRow(row)

 row.x_lon = xlon

 row.y_lat = ylat

 row.length = X

 row.bearing = Course

 row.buffDist = str(wingspan) + " Feet"

 cur.insertRow(row)

 del cur, row

 #Shill End

 arcpy.BearingDistanceToLine_management("in_memory/BearingTable",

"in_memory/BearingLine", "x_lon", "y_lat", "length","FEET", "bearing","", "","", sr)

 arcpy.AddField_management ("in_memory/BearingLine", "buffDist", "TEXT")

 typeCursor = arcpy.da.UpdateCursor("in_memory/BearingLine", ["buffDist"])

 cnt = 0

 for row1 in typeCursor:

 if cnt == 0:

 row1[0] = str(3 * wingspan) + " Feet"

 cnt += 1

 arcpy.AddMessage("Test " + row1[0])

 elif cnt == 1:

 row1[0] = str(2 * wingspan) + " Feet"

 arcpy.AddMessage("Test " + row1[0])

 cnt += 1

 else:

 row1[0] = str(wingspan) + " Feet"

 arcpy.AddMessage("Test " + row1[0])

 typeCursor.updateRow(row1)

 #arcpy.CopyFeatures_management("in_memory/BearingLine", workspace2)

#Debris Line

67

 #arcpy.AddMessage("Trying...")

 #Spatial Outputs

 buffer = arcpy.Buffer_analysis("in_memory/BearingLine", workspace, "buffDist",

"FULL", "ROUND", "NONE")

 #arcpy.CopyFeatures_management(workspace,

"C:/Apache/htdocs/RocsLayout/tbx/New File Geodatabase.gdb/Buffer1")

 #Output

 arcpy.AddMessage("Debris Terminal Velocity (kts): " + str(TVELKTS))

 arcpy.AddMessage("Time to Impact (sec): " + str(T))

 arcpy.AddMessage("Debris Throw Distance (ft): " + str(X))

 arcpy.AddMessage("Angle of Impact (deg): " + str(FPE))

 arcpy.AddMessage("Speed of Impact (kts): " + str(impactkts))

 arcpy.AddMessage("Max Altitude of Debris (ft): " + str(Zmax))

 arcpy.AddMessage("Analysis Complete")

#Shill new start

def getToken():

 params = {}

 params['client_id'] = "WOqbbjf8pTaTC9l7"

 params['client_secret'] = "be16b44ef54e43cfb686e17bd53d21fe"

 params['grant_type'] = "client_credentials"

 params = urllib.urlencode(params)

 try:

 request = urllib2.Request('https://www.arcgis.com/sharing/oauth2/token/',params)

 response = urllib2.urlopen(request)

 response = response.read()

 response = json.loads(response)

 token = response["access_token"]

 return token

 except Exception:

 pass

if __name__ == "__main__":

 main()

#Shill new end

68

Appendix D. Measurement Units

The various measurement units required as input and generated as output.

Unit Description

degree Denoted by ° and is a measurement of an angle.

knot Knot, a unit of speed. It is equivalent to 1.151 mph. It is used in

meteorology and maritime and air navigation.

AGL Above Ground Level, measurement with respect to the underlying ground

surface.

square

feet

Square foot, an imperial unit of area. Defined as the area of a square with

sides of 1 foot.

pounds Pound, an imperial unit of mass.

feet Foot, a unit of length. It is subdivided into 12 inches.

feet MSL Foot Mean Sea Level, a type of vertical datum.

69

Appendix E. Aircraft Values Used in the Microsoft

SQL 2008 R2 Database

70

Appendix F. Instructions to use the Rocs Application

Welcome screen: The Recovery of Crash Site Tool (RoCS) requires an active internet

connection and geolocation enabled to process a request. The screen provides four main

features:

1. START: A quick solution requiring minimal input to allow for rapid response in a

time critical situation.

2. ADVANCED: Allows a user to input more details about the incident to obtain a

more accurate response.

3. INSTRUCTIONS: This page. Provides the user additional information on this

product.

4. ADD AIRCRAFT: Allows for a crowd sourcing effort to take place to keep the

solution current and accurate.

Each of the following pages in the solution has a START OVER button that takes the

user back to this welcome screen if they are interested in doing so.

The application DOES NOT WORK WITH INTERNET EXPLORER.

START: Once the user engages START they are taken to a page that asks them the

following questions: Manufacture, Model, Aircraft heading and Location. The first three

questions are all dropdowns allowing the user a rapid method to select the correct plane

involved in the incident.

Location will take the user to a new page that will display a map and center on the

device location of the user. The user can select with either their finger or mouse the

center of impact on the map. If the map is in the wrong location the user can zoom in or

71

out along with panning to the correct area. Once the user has selected the point of impact

they can then select FINISH.

This will now allow the system to process the inputs to return a result. At this time,

results show a general concentration of debris fields caused by the aircraft impact on the

area. Users can zoom and pan the map to orientate themselves with the area. The buttons

across the top allow the user to change map backgrounds, print and share these results via

email with others who will be assisting in the incident.

ADVANCED: This option is similar to the START option listed above. The following

are additional factors the user can input if they are known about the incident. Aircraft

Speed (kts), Angle of Descent, Ground Wind Speed (kts) and Terrain Slope Angle can be

adjusted using the slide bar or entered into the number text box. Ground Wind Direction

72

and Terrain Slope Direction are both dropdowns the user can select from the listed

options.

The Location Selection and Results page are the same as when used with the START

button, and include the same map, printing and sharing features.

73

ADD AIRCRAFT: This part of the tool allows interested parties to input facts about

different models of planes that may not be available currently for analysis. Users can

select from a manufacture or add a new manufacture if the one they are looking for is not

listed. After the manufacture has been entered then the factory model, wingspan weight,

drag coefficient and frontal area need to be entered to allow the model to compute the

impact area correctly.

Background: The RoCS has been under development since 2011 to help support an

underserved need. Many first responders approach an aircraft incident with little or no

support resources and this solution was drafted to assist in these kinds of situations.

An incident has many factors that come about over time. First and foremost is the

recovery of survivors along with containing any dangerous situations like fire. Second

comes analysis and material recovery and third is remediation and restoration. An

74

incident can take years to complete some or all of these steps and so many groups and

individuals are involved but all need data to be able to be effective along the way.

In coordination with the University of Redlands, graduate students have been presented

with the scope of this effort. The results have been finding proven models and updating

them to work through mobile portals to give incident responders a tool to aid in their

efforts. The results so far are promising but also need to continue to improve. As more

individuals use this tool and provide results and feedback our hope is that over time the

solution will increase in its accuracy and utility. To understand more of how the solution

operates please see the completed papers and documentation by Shilpi Jain.

75

Appendix G. Crash Site Images

Figure: 2013 Alabama crash (National Transportation Safety Board, 2014)

Figure: 2011 New Mexico crash (National Transportation Safety Board, 2012)

76

Figure: 2008 London crash (Department for Transport (Air Accidents Investigation

Branch), 2010)

77

Appendix H. Formulae

Adapted from http://www.movable-type.co.uk/scripts/latlong.html, these formulae were

used to move the crash location as described in Section 5.1.

𝑛𝑒𝑤𝐿𝑎𝑡 = sin−1 (sin(𝑙𝑎𝑡) ∗ cos (
𝑑

𝑅
) + cos(𝑙𝑎𝑡) × sin (

𝑑

𝑅
) × cos(ℎ𝑒𝑎𝑑𝑖𝑛𝑔))

𝑛𝑒𝑤𝐿𝑜𝑛 = 𝑙𝑜𝑛 + tan−1(
sin(ℎ𝑒𝑎𝑑𝑖𝑛𝑔) × sin (

𝑑
𝑅) × cos(𝑙𝑎𝑡)

cos (
𝑑
𝑅) − sin(𝑙𝑎𝑡) × sin(𝑛𝑒𝑤𝐿𝑎𝑡)

)

𝑅 = 6378.1 𝑘𝑚

𝑑 = 𝑤𝑖𝑛𝑔𝑠𝑝𝑎𝑛 (𝑘𝑚)

